Vision-based action recognition of construction workers using dense trajectories

نویسندگان

  • Jun Yang
  • Zhongke Shi
  • Ziyan Wu
چکیده

Wide spread monitoring cameras on construction sites provide large amount of information for construction management. The emerging of computer vision and machine learning technologies enables automated recognition of construction activities from videos. As the executors of construction, the activities of construction workers have strong impact on productivity and progress. Compared to machine work, manual work is more subjective and may differ largely in operation flow and productivity among different individuals. Hence only a handful of work studies on vision based action recognition of construction workers. Lacking of publicly available datasets is one of the main reasons that currently hinder advancement. The paper studies worker actions comprehensively, abstracts 11 common types of actions from 5 kinds of trades and establishes a new real world video dataset with 1176 instances. For action recognition, a cutting-edge video description method, dense trajectories, has been applied. Support vector machines are integrated with a bag-of-features pipeline for action learning and classification. Performances on multiple types of descriptors (Histograms of Oriented Gradients – HOG, Histograms of Optical Flow – HOF, Motion Boundary Histogram – MBH) and their combination have been evaluated. Discussion on different parameter settings and comparison to the state-of-the-art method are provided. Experimental results show that the system with codebook size 500 and MBH descriptor has achieved an average accuracy of 59% for worker action recognition, outperforming the state-of-the-art

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Automatic Recognition of Construction Worker Activities Using Dense Trajectories

Wide spread monitoring cameras on construction sites provide large amount of information for construction management. The emerging of computer vision and machine learning technologies enables automatic recognition of construction activities from videos. As the executors of construction, the activities of construction workers have strong impact on productivity and progress. Compared to machine w...

متن کامل

Human Action Recognition Using Improved Salient Dense Trajectories

Human action recognition in videos is a topic of active research in computer vision. Dense trajectory (DT) features were shown to be efficient for representing videos in state-of-the-art approaches. In this paper, we present a more effective approach of video representation using improved salient dense trajectories: first, detecting the motion salient region and extracting the dense trajectorie...

متن کامل

Action recognition by saliency-based dense sampling

Action recognition, aiming to automatically classify actions from a series of observations, has attracted more attention in the computer vision community. The state-of-the-art action recognition methods utilize dense sampled trajectories to build feature representations. However, their performances are limited due to action region clutters and camera motions in real world applications. No matte...

متن کامل

Combined Ordered and Improved Trajectories for Large Scale Human Action Recognition

Recently, a video representation based on dense trajectories has been shown to outperform other human action recognition methods on several benchmark datasets. The trajectories capture the motion characteristics of different objects, for example human bodies, in spatial and temporal dimensions. In dense trajectories, points are sampled at uniform intervals in space and time and then tracked usi...

متن کامل

Action Change Detection in Video Based on HOG

Background and Objectives: Action recognition, as the processes of labeling an unknown action of a query video, is a challenging problem, due to the event complexity, variations in imaging conditions, and intra- and inter-individual action-variability. A number of solutions proposed to solve action recognition problem. Many of these frameworks suppose that each video sequence includes only one ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Advanced Engineering Informatics

دوره 30  شماره 

صفحات  -

تاریخ انتشار 2016